Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels.
نویسندگان
چکیده
BACKGROUND Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.
منابع مشابه
Endothelial Dysfunction in Aging Blood Vessels Arginase Reciprocally Regulates Nitric Oxide Synthase Activity and Contributes to
Dan E. Berkowitz, Ron White, Dechun Li, Khalid M. Minhas, Amy Cernetich, Soonyul Kim, Endothelial Dysfunction in Aging Blood Vessels Arginase Reciprocally Regulates Nitric Oxide Synthase Activity and Contributes to Print ISSN: 0009-7322. Online ISSN: 1524-4539 Copyright © 2003 American Heart Association, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville A...
متن کاملInducible NO synthase dependent S-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction.
Endothelial function is impaired in aging because of a decrease in NO bioavailability. This may be, in part, attributable to increased arginase activity, which reciprocally regulates NO synthase (NOS) by competing for the common substrate, L-arginine. However, the high Km of arginase (>1 mmol/L) compared with NOS (2 to 20 micromol/L) seemingly makes direct competition for substrate unlikely. On...
متن کاملArginase Promotes Endothelial Dysfunction and Hypertension in Obese Rats
OBJECTIVE This study investigated whether arginase contributes to endothelial dysfunction and hypertension in obese rats. METHODS Endothelial function and arginase expression were examined in skeletal muscle arterioles from lean and obese Zucker rats (ZRs). Arginase activity, arginine bioavailability, and blood pressure were measured in lean and obese animals. RESULTS Arginase activity and ...
متن کاملMechanisms of endothelial dysfunction induced by aging: role of arginase I.
Impaired production or biological activity of nitric oxide (NO) released from vascular endothelium is a central mechanism of endothelial dysfunction.1 Large number of published studies demonstrated that endothelial dysfunction is a hallmark of aged endothelium.2 Currently, increased concentration of superoxide anion in vascular wall is considered a major mechanism of endothelial dysfunction cau...
متن کاملArginase Promotes Skeletal Muscle Arteriolar Endothelial Dysfunction in Diabetic Rats
Endothelial dysfunction is a characteristic feature in diabetes that contributes to the development of vascular disease. Recently, arginase has been implicated in triggering endothelial dysfunction in diabetic patients and animals by competing with endothelial nitric oxide synthase for substrate l-arginine. While most studies have focused on the coronary circulation and large conduit blood vess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 108 16 شماره
صفحات -
تاریخ انتشار 2003